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Brief history & motivation Brief history & motivation 
(from the sea(from the sea--based aviation perspective)based aviation perspective)

 Historical data taken from Lt. Brook Sherman’s MS Thesis “The Examination and 
Evaluation of Dynamic Ship Quiescence Prediction and Detection Methods for 

Application in the Ship-Helicopter Dynamic Interface,”

 

2007
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Simple probabilistic approachSimple probabilistic approach
Input roll, pitch, roll velocity, and pitch velocity past time history (or 
whatever relevant variables characterize the system) and non-
dimensionalize with each variables standard deviation.
Search non-dimensional past time history for n neighbours nearest to the 
point of interest (point of interest being the time from which we wish to 
approximate forward, and n for this work was selected as 10). 
Note the actual dimensional roll, pitch, roll velocity and pitch velocity 
trajectories for the duration of interest immediately following each of the 
10 nearest neighbours.
Generate 1, 2, and 3 standard deviation (1, 2, 3σ) envelope curves of 
predicted motions based upon the mean value ±1, 2, 3σ at each time step 
from the neighbour time histories.  
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Illustration of conceptIllustration of concept
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Example: Simple statistical model, based on pitch, roll, pitch vExample: Simple statistical model, based on pitch, roll, pitch velocity, elocity, 
and roll velocity data.and roll velocity data.
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Example: Simple statistical model, based on pitch, roll, pitch vExample: Simple statistical model, based on pitch, roll, pitch velocity, elocity, 
and roll velocity data. and roll velocity data. 
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Example: Simple statistical model, based on heading, pitch, rollExample: Simple statistical model, based on heading, pitch, roll, pitch , pitch 
velocity, and roll velocity data. velocity, and roll velocity data. 
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Example: Simple statistical model, based on heading, pitch, rollExample: Simple statistical model, based on heading, pitch, roll, pitch , pitch 
velocity, and roll velocity data. velocity, and roll velocity data. 
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Example: Simple statistical model, based on heading, pitch, rollExample: Simple statistical model, based on heading, pitch, roll, pitch , pitch 
velocity, and roll velocity data. velocity, and roll velocity data. 

If we knew heading data relative to waves, we could make use of this 
information and concatenate time histories—perhaps improving 
accuracy, and emulating the types of large time histories you would 
have in a realistic environment.
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Neural Network ApproachNeural Network Approach
Assume a form for the equations of motion
Use neural network for parameter identification 
problem
Nontraditional implementation

We are seeking physical coefficients rather than a ‘black box’
form of model.  
As such, we are using a relatively short time period as 
‘training data’ then using that information for forward 
prediction.

Future work to involve neural network for system 
identification as well…
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ModelingModeling
Traditional 1DOF roll model

Nontraditional fractional derivative model (Spyrou, 2008)
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Architecture of Back PropagationArchitecture of Back Propagation--Based Neural Network ControllersBased Neural Network Controllers
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Sample result: Hull5514_data2_M0390EUSample result: Hull5514_data2_M0390EU
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Application to the unmanned watercraft data set, excerpt Application to the unmanned watercraft data set, excerpt 
from data1 filefrom data1 file
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DiscussionDiscussion
All these approaches are/will be limited by a lack of knowledge of oncoming 
waves.
And all can be directed to focus more on whatever variables we deem most 
relevant.

Speed, wind, etc…
More variables carry computation time penalties

Conclusions: Statistical approachConclusions: Statistical approach
Assumed process deterministic to some extent—while not bad for short time 
periods if we capture the right information, all it takes is one wave for the 
prediction to be thrown off, therefore any contol system using this information 
must be stochastic and able to account for these uncertainties
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Conclusions: Neural NetworkConclusions: Neural Network
The parameters in the equation of rolling motion are estimated using the roll response 
only. A priori knowledge of the input is not needed. This makes this method appealing 
for use on ships at sea for estimating equivalent instantaneous parameter values. 
Current work is looking at a host of models, single and multi-DOF, and perhaps 
coupling with a neural network to determine an ideal reduced order model to fit the 
current vessel motion conditions. 
All the parameters in the equation of motion can be estimated using this method. This 
may be of use when attempting to glean physical insight from the actual vessel motions 
which can then carry over into development of more complicated simulation tools or 
coupling to analytical tools.
Different models for ship motion can be evaluated using this approach as 
demonstrated via comparison of a traditional ordinary differential equation model and 
a fractional differential equation model per Spyrou et al (2008).
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